If it's not what You are looking for type in the equation solver your own equation and let us solve it.
p^2-17p-38=0
a = 1; b = -17; c = -38;
Δ = b2-4ac
Δ = -172-4·1·(-38)
Δ = 441
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{441}=21$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-17)-21}{2*1}=\frac{-4}{2} =-2 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-17)+21}{2*1}=\frac{38}{2} =19 $
| 37=y/3+11 | | -12=5(4-a) | | −5x+14+7x−13=2 | | 1/4(x+9)=15 | | n²=2n-1 | | w/5+9=30 | | 52=3x²+x | | 2(x+9)=4x+14 | | x+2x+10=30 | | 0.7(7x+2)=2.1 | | 46h+54h=600 | | (4x-4)/2=-12 | | 5/6x-3=5/87x | | {w}{2.5}=8 | | 3y–2=13 | | 8w+8=89 | | 1/2(14x)=28 | | 2b+4=−18−9b | | 4x-4=4(-5-8)+4 | | r²+18r+81=0 | | 4c=-368 | | 4y–15=3 | | 10/x-1+1=20/x^2-1 | | Y-3-y+6=7y | | 10=7+2x | | (2x+7)=52 | | 3x(x-2)=9x | | 981=2c-385 | | 310.155d+78=(1+8.05d)^0.5+2(1+24.83d)^0.5+(1+50.32d)^0.5 | | O81=2c-385 | | 5+x/2=30 | | m²+4m+4=0 |